
PHYSICAL REVIEW B 84, 085120 (2011)

Orbital-separation approach for consideration of finite electric bias within density-functional
total-energy formalism
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We present a simple approach for the consideration of bias voltage within the Kohn-Sham formalism of
density-functional theory. To be specific, the electronic charging of a metal-insulator-metal capacitor under bias
voltage is considered explicitly. This is achieved by separating the Kohn-Sham orbitals around the Fermi level
into anode or cathode parts and applying different Fermi levels in the determination of occupation numbers.
The formal basis of the present approach is discussed in detail. We test this method against Au-vacuum-Au
and Au-MgO-Au capacitors with various dielectric thicknesses. It is shown that the bulk optical and static
dielectric constants can be obtained accurately. We also demonstrate that interface effects on capacitance can
be investigated straightforwardly. Furthermore, we apply this method to the graphene capacitor and identify the
quantum effects in the capacitance, which is well explained by the contribution of the kinetic energy of electrons
to the capacitance. The present method can be readily implemented in conventional first-principles codes and
provides a unified approach to evaluate capacitance of nanodevices.
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I. INTRODUCTION

Technological advances have made possible the fabrication
and observation of electrical devices with characteristic
lengths in the nanometer regime. Such devices sometimes
exhibit unusual properties that can not be understood from
classical physics. For example, metal-insulator-metal (MIM)
capacitors with nanometer thickness (to be used, e.g., for
next-generation DRAMs) sometimes exhibit capacitances that
deviate significantly from what is expected from bulk measure-
ments.1–3 This is presumed to be due to the characteristics
of the metal-insulator interface, the impact on the overall di-
electric behavior of which becomes significant with increased
interface to volume ratios in thin films. Therefore, it is crucial
to understand the origin of such properties and to control them
for achieving further scaling of nanodevices. Furthermore, it
has been pointed out that the capacitance is comprised not only
of the classical geometric capacitance, which is proportional to
the inverse of the dielectric thickness, but also of contributions
of quantum mechanical origin, which may become dominant
as the dielectric thickness approaches the nanometer to
subnanometer regime,4 or when low-dimensional materials
such as carbon nanotubes and graphene are used.5–8

To clarify the origin of such nanoscale properties, one often
resorts to quantum mechanical methods such as first-principles
simulation based on the Kohn-Sham (KS) formalism of
density-functional theory (DFT).9,10 However, conventional
DFT methods can not account for bias voltage, which is
essential in simulation of electrical devices. This is due to
the fact that the original KS-DFT formalism seeks the global
ground state with a unique Fermi level over the entire system.
To overcome this limitation, several methods have been devel-
oped in recent years for consideration of bias voltage within
the KS-DFT formalism.11–21 However, they have not seen
widespread use due to limitations in accuracy and/or efficiency,
geometric constraints, and difficulty in implementation. We
discuss some of these points in more detail below.

Quantum transport techniques such as nonequilibrium
Green’s function (NEGF) method,16 boundary-matching
scattering-state density-functional method,13,14,22 and time-
dependent DFT (Ref. 17) are each capable of describing the
effect of finite electric bias, and they have been applied with
success. However, these methods are still too costly in terms
of computational power to apply to realistic systems, even on
today’s fastest computational facilities.

On the other hand, if we are concerned with insulating
systems such as MIM capacitors, then we can resort to
techniques that require much less computational resource. One
way to deal with the situation is to consider a slab geometry and
apply a sawtooth potential to simulate an external field.11,12

However, this does not work with MIM slabs because there is
only one Fermi level in the system that is commonly applied
to both metal slabs. In effect, the system would respond
as if the metal parts were short circuited; the metal slabs
would completely screen the electric field and the insulator
part would not “feel” the bias at all. An alternative approach
is to use metal-insulator (MI) slabs, as was demonstrated
in Refs. 21 and 23. In this method, the capacitance of the
MIM structure is calculated from the polarization and charge
density difference profiles of the MI system under an external
field. This has limitations, however, as insulator surfaces can
be metallic, depending on the termination. Moreover, this
method is limited in investigating quantum capacitance (see
Sec. II A). An alternative to using a sawtooth potential is to
modify the boundary condition in solving Poisson’s equation
to consider bias voltage, as is done in the effective screening
medium method.18 However, this also does not escape from
the same limitations due to the fact that the electronic states
are filled according to a unique Fermi level.

Recently, it was shown that this problem can be re-
solved elegantly by introducing maximally localized Wannier
functions (MLWFs) in considering the coupling of a periodic
metal-insulator structure to an external field.20,24 This method
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has been successful in examining dielectric dead layers
at metal-insulator interfaces.25,26 However, since the field
direction must be specified before the calculation, the method
can practically deal with only parallel plate capacitors.

Another completely different approach for bias application
has been proposed by Nakaoka et al.15 In the so-called
partitioned real-space density-functional (PRDF) method, they
consider two isolated electrodes with vacuum in-between.
The KS equations for two electrode regions are solved
independently, while Poisson’s equation is solved for the entire
system. This idea, however, can not be applied to MIM systems
because the application of the method requires that there be no
wave functions between the electrodes.

A similar idea, but one that avoids solving two KS
equations, was proposed by Uchida et al.5,19 In this enforced
Fermi energy difference (EFED) method, they consider the
following free-energy functional:

� = E[ρ] − �εFN [ρ], (1)

where E[ρ] is the KS energy of the capacitor with electronic
density ρ, �εF is the Fermi level difference between the
electrodes, and N [ρ] is the number of electrons transferred
from anode to cathode by the battery. Solving the variational
problem for � at constant �εF leads to a set of slightly
modified KS equations, which can be solved using the
usual self-consistent iterations. Nevertheless, to define N [ρ]
unambiguously, all of the electrons must be confined to one of
the electrodes; thus, this method can not be applied to MIM
structures either.

In order to address the above-mentioned limitations in
previous methods, we propose a very straightforward method
that is based on separation of KS orbitals of the MIM system
into anode and cathode parts. We will refer to this method
as the orbital-separation approach (OSA) hereafter. In the
OSA, the orbitals belonging to each electrode are occupied
according to different Fermi levels, allowing for a fully
self-consistent consideration of bias voltage in the limit of
zero current between electrodes. An important characteristic
of this method is that the total energy of the system is well
defined, making possible the calculation of capacitance based
on the energy-voltage relationship. Moreover, the numerical
procedure is relatively simple and can be readily implemented
in existing KS-DFT codes.

This paper is organized as follows. In Sec. II, we explain in
detail about the OSA and its implementation into DFT codes.
The theoretical basis for this method and its applicability to
various situations are also discussed. In Sec. III, we present
the calculation results for Au-vacuum-Au, Au-MgO-Au, and
graphene-vacuum-graphene capacitors to demonstrate the
robustness and accuracy of the present scheme. The summary
and main conclusions will be provided in Sec. IV.

II. THEORETICAL BACKGROUND
AND COMPUTATIONAL METHOD

A. Orbital-separation approach

In conventional self-consistent field (SCF) KS-DFT
calculations utilizing the periodic boundary condition, the

lowest-energy KS orbitals are occupied in each SCF step
leading to a single Fermi level in the entire system. The electron
density is constructed as

ρ(r) =
∑

k

∑
i

wkfσ (εi,k − εF)|ψi,k(r)|2, (2)

where k runs over sampled k points in the Brillouin zone,
i represents band indices, wk is the k-point weight, fσ is
the distribution function used for smearing of the occupation
numbers (the magnitude of the smearing is controlled by the
σ parameter), εF is the Fermi level, and ψi,k and εi,k are
orthonormalized KS orbitals and corresponding eigenener-
gies, respectively. The Fermi level εF is determined so that∑

k

∑
i wkfσ (εi,k − εF) = N , with N being the number of

electrons in the supercell. In the OSA presented here, this
occupation scheme is modified to simulate a system under
bias voltage. In practice, we first obtain the ground-state
electron density and KS orbitals using the conventional
occupation scheme, then switch to the new scheme outlined
below. Except for the occupation scheme, the SCF loops are
carried out in the same manner as in conventional KS-DFT
methods.

We consider a vacuum-metal-insulator-metal-vacuum ca-
pacitor structure as shown in Fig. 1(a). Dipole correction is
applied in order to cancel the long-range dipole-dipole interac-
tion between adjacent supercells in the direction perpendicular
to the interface12 (note that dipole correction formulas for
the potential and the total energy given in Ref. 12 apply
to any slab with a dipole, including the MIM system under
finite bias voltage). To determine the occupation number of
each KS orbital, we first determine the ground-state Fermi
level in a specific SCF step following the conventional
occupation scheme mentioned above. Then, we inspect the
spatial distribution of each orbital within a preset energy
window around the ground-state Fermi level [Fig. 1(b)]. The
window has to be wide enough so that we can set the two
new Fermi levels within that window, but it also has to be
narrow enough so that the valence- and conduction-band
states of the insulator are kept outside of the window. If
the insulator is thick enough, there would be no orbital
overlap between the electrodes, and the KS orbitals can be
unambiguously separated into the right and left electrodes (the
numerical criteria for separating the orbitals are discussed
in the Appendix). This is actually a prerequisite for the
application of this method (the condition of thick dielectrics
will be elaborated on in Sec. II D). An exception is when two
orbitals belonging to different electrodes are degenerate at the
same k point in the Brillouin zone. In this case, the wave
function would exist in finite amounts on both electrodes.
This is most significant when the two metal electrodes are
symmetric. However, the degeneracy should be lifted at finite
bias voltages owing to the asymmetric charge accumulation
at the interfaces. At the initial stage, the degeneracy can be
avoided by starting from the ground-state electron density
under a small external electric field.

After separation, the orbitals within the window are
occupied according to different Fermi levels, while the orbitals
below this window are occupied fully and those above the
window are left unoccupied. Specifically, the occupation
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FIG. 1. (Color online) (a) Schematic of the
simulation models considered in this work. The
box indicates the boundaries of the periodic
boundary condition employed in the calcula-
tions. (b) Schematic of the separation procedure
within a preset window around the Fermi level.

functions are given as

fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, εi < εlower
win

0, εi > ε
upper
win

fσ (εi,k − εF,L), i ∈ window, L

fσ (εi,k − εF,R), i ∈ window, R

(3)

where εlower
win and ε

upper
win are the lower and upper bounds of the

energy window, and L (R) stands for the orbitals separated into
the left (right) electrode. The density ρ(r) is then calculated
according to the KS orbitals {ψ} and the occupation functions
{f } in Eq. (3). The effective potential for the next SCF step is
constructed based on this density. The external bias voltage
V constrains the Fermi-level difference �εF = εF,L − εF,R

between the electrodes as follows:

�εF = eV, (4)

where e is the electron charge. There is another condition that
{f } should satisfy: ∑

k

∑
i

wkfi = N, (5)

where N is the number of electrons within the supercell. The
Fermi levels εF,L and εF,R are determined by Eqs. (3)–(5).

The total free energy of the ion-electron system is written
in the same manner as in the conventional KS scheme with
the occupation functions {f } and density ρ(r) constructed
according to the prescription detailed above:

F KS
cap [{ψ},{f },{R}] =

∑
i

fi 〈ψi |T̂ + V̂ ion
NL |ψi〉 + EH[ρ]

+Exc[ρ] +
∫

d3r V̂ ion
loc (r)ρ(r)

+EII ({R}) −
∑

i

σS(fi). (6)

In Eq. (6), T̂ is the kinetic energy operator, V̂ ion
NL is the nonlocal

part of the ionic pseudopotential, EH is the Hartree energy, Exc

is the exchange-correlation energy functional, V̂ ion
loc is the local

part of the pseudopotential, EII is the Madelung energy of the

ions, and the last term is the entropy term that arises from the
partial occupancies fi .27 Note that the summation in k points
has been omitted from Eq. (6) to simplify the notation.

It is worth mentioning that the present method controls
the Fermi-level difference eV between electrodes; this does
not necessarily correspond to the electrostatic (Hartree) po-
tential difference.4 This is especially true when utilizing low-
dimensional electrodes, the total capacitance of which includes
a significant contribution from the quantum capacitance.
However, if the metal slab is thick enough, the electronic band
structure in the middle of the metal slab should be the same as
in bulk due to the complete screening in the interfacial region.
Since the Fermi level in bulk is fixed with respect to the band
structure, and the band structure is referred to the electrostatic
potential, the Fermi-level difference between electrodes would
correspond to the electrostatic potential difference.

We point out that the OSA can be understood as an
extension of the �SCF method used to calculate excited states
of molecules.28,29 In the �SCF method, electron-hole pairs
are introduced by transferring an electron from an occupied
KS orbital to an unoccupied one. The KS effective potential
is constructed from this excited electronic density, and the
usual SCF procedure is carried out while keeping the hole
in the specific orbital. Although this method appears to be at
odds with the original KS formalism, a formal basis was put
forward in Ref. 30 in which the �SCF method is shown to be
an approximation of an exact excited-state KS formalism.

B. Variational nature and forces

In order to examine the variational nature of the OSA and
to derive an expression for the forces, we consider the total
free energy (�) of a capacitor connected to an external battery
with voltage V :

� = EQM
cap [�,{R}] − V Q, (7)

where EQM
cap is the quantum mechanical energy of the capacitor

with electrons represented by the many-body wave function
� and ions fixed at positions {R}, and −V Q corresponds to
the chemical energy of the battery. Q is the charge moved
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from cathode to anode, which can be precisely measured in
experiment by inserting an ampere meter into the circuit.
At equilibrium, the free energy � is minimized at Q = Q0

and � = �0. We set EQM
cap [�0,{R}] as E0. The equilibrium

condition also requires that the local Fermi levels of the two
electrodes differ by eV . Suppose that the external battery is
instantly removed after equilibrium is reached. The capacitor
is now isolated, but the many-body wave function and hence
EQM

cap should remain the same (�0 and E0, respectively).
This means that E0 is the minimum energy of the capacitor
under the constraints that either (i) Fermi levels of the two
electrodes differ by eV or (ii) the charge transfer between
electrodes is Q0. These two constraints are equivalent since
Q0 monotonically depends on V for given atomic positions
(except for regions where the capacitance is negative). The
second constraint on Q0 is tricky to impose in the presence of
a dielectric layer because it is nontrivial (if not impossible) to
separate the free charge (Q) and the polarization charge from
the total charge density; thus, we utilize the first constraint.
In short, we recast the problem into finding the minimum
energy state of the capacitor under the constraint of a specific
Fermi-level difference between electrodes. In this paper, EQM

cap

is replaced by the KS free-energy functional (F KS
cap ) in Eq. (6),

and the local Fermi level is controlled by the OSA mentioned
in the preceding section. Since we seek the minimum KS
energy under a certain constraint on orbital occupation, the
KS equation can be employed in the same manner as in
conventional density-functional calculations as long as the
local Fermi level is adjusted at each iteration step.

One can obtain the change in � when an atomic coordinate
shifts from R to R + dR by following a two-step procedure:
first, the circuit is opened and the ion moves by dR with
the current flow prohibited and the charge transfer Q fixed.
Then, the change in the free energy is limited only within the
capacitor part such that d�1 = (∂F KS

cap/∂R)Q. Concurrently,
the voltage between electrodes increases by dV . Second, the
circuit is connected to the battery and the extra charge transfer
dQ occurs to negate the voltage change. The battery lowers
the free energy by −V dQ, while F KS

cap increases by

dF KS
cap = (εF,L − εF,R)dQ/e = V dQ (8)

(according to Janak’s theorem31). These terms cancel, so there
is no change in the free energy in the second step (d�2 = 0).
Therefore,

(d�)V =
(

∂F KS
cap

∂R

)
Q

dR, (9)

and thus the force acting on the atom can be calculated as

fV = −
(

∂�

∂R

)
V

= −
(

∂F KS
cap

∂R

)
Q

. (10)

In fact, this is exactly the one obtained by Hellmann-Feynman
theorem within the KS formalism since it is calculated, in prin-
ciple, under the assumption that the occupation numbers do not
change and hence Q is kept constant. Thus, the forces (includ-
ing Pulay corrections) can be calculated in the same manner
as in the conventional KS scheme (see, e.g., Refs. 32–34).
This means that the only part that needs modification in

conventional KS-DFT codes is the determination of the
occupation numbers {f }. The other parts (e.g., forces and
energies) are calculated from {f } in the same manner as in
the ground-state scheme.

C. Evaluation of capacitance from the total energy

As a final step, we elaborate on how to calculate the
capacitance (C). We start with the fundamental definition of
capacitance density as follows:

C(V )

A
= 1

A

dQ

dV
, (11)

where dQ is the charge transferred between electrodes when
the voltage changes from V to V + dV , and A is the surface
area of the capacitor. As mentioned earlier, in applying
Eq. (11) within the first-principles framework, it is difficult to
distinguish the free charge and polarization charge in the total
charge if there is a dielectric media between the electrodes.
Instead, we utilize the total energy in the following way: the
energy increase (dF KS

cap ) by moving dQ is given by V dQ [see
Eq. (8)]. Inserting this into Eq. (11) results in the following
formula of capacitance density in terms of the total energy:

C

A
= 1

AV

dF KS
cap

dV
. (12)

D. Applicability of our method

Our idea of separating the KS orbitals into two electrodes
is similar to the PRDF (Ref. 15) and EFED (Refs. 5 and 19)
methods mentioned earlier. However, the present method
surpasses them by providing far more freedom in the system
geometries that can be calculated. That is, while the PRDF
and EFED methods require that the orbitals in the electrode
regions are completely isolated from each other throughout all
occupied states, this method can be used as long as the orbitals
around the Fermi level are well separated.

We also note that the present scheme is compatible with
any basis expansion method (plane wave, localized orbitals,
augmented plane wave, etc.) as long as eigenfunctions and
eigenvalues are obtained in the calculation. It should be
possible even to apply to the Hartree-Fock method.

It is noted that the present method fixes the bias voltage
V between the electrodes. That is, there is no external field,
but, rather, an external battery. Thus, our situation can be
interpreted straightforwardly as a finite object (i.e., a single
capacitor) connected to a battery. Due to this closed-circuit
condition, the total energy of the capacitor is not a conserved
quantity as the external battery can do work on the system.
On the other hand, the open-circuit condition can be simulated
when there is a vacuum region between the electrodes. In this
case, all electrons can be counted as belonging to either side
of the vacuum, and fixing the amount of charge in each side
allows one to simulate the open-circuit situation. The energy
should conserve in this case. We note that the MLWF approach
can handle both open- and closed-circuit situations even in the
presence of dielectrics by fixing the electric displacement or
the electric field.24

The important prerequisite for using our method is that
electronic states from different electrodes do not overlap
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meaningfully inside the dielectrics. This is the case as long
as the dielectric is thicker than 1 nm. For dielectric layers
thinner than this, the direct tunneling currents would be
so significant that it would not function as a well-defined
capacitor. Therefore, the present method can be employed in
most practical applications.

Another limitation of the present method is that, unlike
quantum transport techniques such as NEGF-based methods,
it can not consider electronic current between electrodes.
However, while the implementation of the NEGF method is
practically limited to localized basis sets, the OSA can be used
for any basis set (including plane waves). This means that,
in the limit of zero current, our method may give a much
more accurate description of the self-consistent electronic
structure under applied bias voltage. Thus, the charge density
and ionic positions from the present method can serve as
a good approximation in the limit of small current density.
Furthermore, unlike the NEGF method where semi-infinite
electrodes can be considered, our method requires that the
electrode is finite in at least one direction. This may seem
like a disadvantage, but, in fact, this system setup leads to a
well-defined total energy of the system under bias voltage.
This is an obvious advantage over NEGF-based methods,
where the total energy of the system has not been defined
unambiguously. Moreover, this setup allows for the calculation
of nanoelectrodes, e.g., monolayer metals and graphene as will
be demonstrated in the next section.

III. APPLICATION AND NUMERICAL
TESTS ON NANOCAPACITORS

It is rather straightforward to implement the OSA in existing
DFT codes since the only part that needs modification is the
determination of the occupation number for each orbital. In
this work, we implemented this method in Vienna ab initio
simulation package33,34 (VASP) and performed calculations on
Au(100)-vacuum-Au(100) and Au(100)-MgO(100)-Au(100)
nanocapacitors of several dielectric thicknesses. A 6 × 6
Monkhorst-Pack k-point mesh was used in the interface
parallel directions, with a single 
-point sampling in the
perpendicular direction. We also performed calculations on
a graphene-vacuum-graphene capacitor employing a 161 ×
161k-point mesh (the reason for such dense sampling will be
discussed later). The Gaussian smearing method was used with
a smearing width of 0.05 eV. The projector augmented wave
method35,36 was used for treating electron-ion interactions, and
a cutoff energy of 500 eV was used for the expansion of the
KS orbitals using a plane-wave basis set. The local density
approximation37,38 (LDA) was employed for the exchange-
correlation functional. Dipole correction12 as implemented in
VASP was used to cancel the dipole-dipole interaction between
adjacent unit cells. The total energies were converged within
10−8 eV per supercell. When performing structural relaxation,
the force on each atom was converged within 0.001 eV/Å.
We note that these are relatively strict criteria for convergence,
but they are necessary to address the small energy changes
under bias voltage. However, since convergence is usually
exponential, this should not pose a big problem for most cases
with the appropriate choice of calculation parameters.

(a)

(b)

(c)

Au
 = 1, 2, and 3 nm1.5 nm 1.5 nm1.1–1.7  nm

x

z

 = 2 nm

(d)

deff

0 10 20 30 40 50 60 70

-2

0

2

Δρ
 (z

) (
10

−
4 Å

−
3
)

z (Å)

 0.2 V
 0.6 V
 1.0 V

0 10 20 30 40 50 60 70

-0.5

0.0

0.5

ΔV
H

(z
) (

eV
)

z (Å)

0 10 20 30 40 50 60 70
0.00
0.02
0.04

Au

de
ns

it
y 

(Å
−

3 )

Au

L
oc

al

1.1–1.7  nm

z (Å)

 0.2 V
 0.6 V
 1.0 V

FIG. 2. (Color online) (a) The Au-vacuum-Au capacitor model
used in this work. The box represents the periodic boundary condition.
(b) xy-plane average of the electron density obtained by integrating
the states between ±1 eV around the Fermi level under zero bias,
(c) xy-plane average of the induced charge density at various bias
voltages, and (d) xy-plane average of the electrostatic potential
difference (�VH) with respect to zero bias results. In (b)–(d), the
results for d ′ = 2 nm are presented. The vertical dashed lines indicate
the position of the surface Au nuclei, while the dotted lines indicate
the position of the surface corresponding to the effective vacuum
thickness deff (see text).

A. Au-vacuum-Au capacitor

We first examine the effect of bias voltage on the system
shown in Fig. 2(a). The capacitor is comprised of two
Au electrodes sandwiching vacuum, and each electrode is
comprised of 8 Au(100) layers. Figure 2(b) shows the xy

average of the electron density corresponding to the states near
the Fermi level. It can be seen that the prerequisite of having
no orbital overlap between the electrodes is well satisfied.

We calculate the plane-averaged induced charge [�ρ(z)]
due to applied bias as follows:

�ρ(z) = 1

LxLy

∫ Lx

0
dx

∫ Ly

0
dy[ρ(x,y,z; V ) − ρ(x,y,z; 0)],

(13)

where ρ(x,y,z; V ) is the charge density at position (x, y, z)
under bias voltage V , and Lx (Ly) is the dimension along
the x (y) direction. Most of the induced charge is confined
within ∼5 Å from the surface [Fig. 2(c)]. The change in
the electrostatic potential [�VH(z)] due to bias application
is calculated in the same manner:

�VH(z) = 1

LxLy

∫ Lx

0
dx

∫ Ly

0
dy

× [VH(x,y,z; V ) − VH(x,y,z; 0)], (14)
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and total energy change (right y axis) as functions of bias voltage.
(b) The capacitance evaluated from the total energy (open circle) and
from the accumulated charge (solid square). The results are presented
for the Au-vacuum-Au capacitor with a vacuum thickness of
d ′ = 2 nm.

where VH(x,y,z; V ) is the local electrostatic potential at
position (x,y,z) under an applied bias voltage V . As shown
in Fig. 2(d), �VH(z) is flat in the metal electrodes and drops
linearly in the vacuum region as expected from elementary
electrostatics. The potential difference between the two elec-
trodes corresponds almost exactly (within 1%) to the applied
Fermi-level difference eV .

Figure 3(a) shows the total energy and total accumulated
surface charge as a function of bias voltage. The total
energy with respect to zero bias �E = F KS

cap (V ) − F KS
cap (0) is

a parabolic function of voltage as expected from classical
electrostatics (E = 1/2CV 2). The accumulated charge Q is
linear with respect to voltage, and this is also the expected
behavior (Q = CV ). In Fig. 3(b), the capacitances evaluated
from Eqs. (11) and (12) using central differences are shown and
it is seen that they agree within 0.2%. This strongly suggests
that Eq. (12) produces reliable capacitance values.

Next, we examine the dependence of the capacitance on
the vacuum thickness. Classically, the capacitance can be
written as a function of vacuum thickness d as C = εA/d.
However, when performing atomistic calculations, d can not
be defined unambiguously due to the spill-out of electrons
into the vacuum as can be seen in Fig. 2(c). Here, we assume
that the effective vacuum thickness deff differs by a constant
from the distance between the surface atoms facing each
other (d ′). That is to say, the inverse capacitance can be
written as

A

C
= deff

ε
= d ′ − �

ε
. (15)
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FIG. 4. The inverse capacitance of the Au-vacuum-Au capacitor
with respect to d ′.

Figure 4 shows the calculated inverse capacitance as a function
of d ′. We performed a linear fit of the data and confirmed that
the slope equals the inverse of the vacuum permittivity (the
error was within 0.02%). From the x intercept, � is evaluated
to be 3.0 Å. The position of this “effective surface” is shown in
Figs. 2(b)–2(d) with dotted lines (we have assumed that �/2
is assigned equally to both surfaces). The effective surface
coincides well with the boundary from which the electrostatic
potential drops linearly. It should be noted that the � value
includes the effect of the spill-out of electrons into the vacuum
as well as the effect of the quantum capacitance,22 although
the latter would be small due to the relatively large density of
states (DOS) of Au electrodes around the Fermi level.

B. Au-MgO-Au capacitor

As a more realistic example, we consider the Au-MgO-
Au capacitor model as in Fig. 5(a). A thin film of MgO
is sandwiched between two 8-layer Au electrodes. The z

direction corresponds to the (100) orientation of MgO and
Au. Figure 5(b) shows the electron density corresponding to
the states around the Fermi level. One noticeable feature that
is distinct from the vacuum capacitor is the development of
metal-induced gap states (MIGs) at the edge of the dielectric.
Nevertheless, the orbitals of the two metal plates around the
Fermi level have no overlap (within numerical accuracy) with
each other, so the OSA is applicable to this system as well.
The band gap of the dielectric limits the amount of bias voltage
that can be applied, but this is not an issue in this work since
the bias voltage is increased only up to 1 V.

The change in the electrostatic potential (�VH) due to bias
application is shown in Fig. 5(c) with the atomic structure
fixed or relaxed. When the structure is fixed, �VH is similar
to that of the vacuum capacitor [Fig. 2(d)]: the potential is flat
in the electrodes and drops linearly inside the insulator film.
When the structure is relaxed, on the other hand, atomic-scale
oscillations occur due to the small movement of the ions, but
the same amount of potential difference is maintained between
the electrodes.

The voltage-energy relation of the Au-MgO-Au capacitor
with 9 MgO(100) layers is shown in Fig. 6(a). Again, the
total energy is a parabolic function of bias voltage as in the
vacuum capacitor. The relaxed systems have higher energies
than the fixed systems at the same voltage, and this might
seem strange at first sight. However, this is actually the
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FIG. 5. (Color online) (a) Schematic of the Au-MgO-Au capac-
itor model under study, (b) xy-plane average of the electron density
obtained by integrating the states between ±1 eV around the Fermi
level under zero bias, and (c) xy-plane average of the electrostatic
potential with respect to that at zero bias. The results are given for the
capacitor with 9 MgO layers whose structure was fixed (solid line) or
relaxed (dashed line) at V = 0.6 V. The vertical dashed lines indicate
the positions of the surface nuclei.

expected behavior because dielectric relaxation allows for
further charging of the capacitor, and the total free energy
including the chemical energy of the battery decreases (see
Sec. II B). From this voltage-energy curve, the capacitance at
each voltage is evaluated by Eq. (12) using central differences,
and the results are plotted in Fig. 6(b) [we recall that Eq. (11)
can not be used when there is a dielectric]. It is seen that
the capacitance is almost constant with respect to voltage,
meaning that the voltage dependence is almost negligible. This
is consistent with the fact that the calculated voltage-energy
curve is almost perfectly parabolic, following the classical
relation E = 1/2CV 2 for voltage-independent capacitance.

Next, we look at the dependence of the capacitance on
dielectric thickness. For the sake of analysis, we divide the
dielectric into bulk and interfacial parts and rewrite the total
capacitance as

A

Ctot
= A

(
1

Ci
+ 1

Cb
+ 1

Ci

)

= 1

ε0

[
2di

(
1

εi
− 1

εb

)
+ d

εb

]
, (16)

where A is the area of the capacitor plates, Ci and Cb are
interfacial and bulk capacitances, ε0 is the permittivity of
vacuum, εi and εb are the interfacial and bulk dielectric
constants, d is the nominal thickness of the dielectric, and di

is the thickness of the interfacial part. The nominal thickness
is defined by the number of layers multiplied by the interlayer
distance in bulk. By plotting the inverse capacitance as a
function of the dielectric thickness and fitting it to Eq. (16),
one can evaluate εb from the slope. We can also see if there is
indeed an “interfacial part” by examining the intercept.

Figure 7 shows the inverse capacitance at 0.6 V plotted
against various dielectric thicknesses. They are fitted very
well with a linear function, suggesting that the above fitting
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FIG. 6. (a) The total energy with respect to that at zero bias and
(b) capacitance as functions of bias voltage. The results are given for
the capacitor with 9 MgO layers whose structure was fixed at the zero
bias structure (solid squares) and that relaxed at each bias voltage
(open circles).

equation captures the essential physics of the system. From
the slope for the fixed system, we obtained the bulk optical
(ion-clamped) dielectric constant of 3.18. We also performed
the same analysis on the relaxed system, and obtained a bulk
static dielectric constant of 9.53.

To assess the accuracy of this result, we calculated the bulk
optical and static dielectric constants using density-functional
perturbation theory. The calculations were performed on the
unit cell with one formula unit of MgO employing a 6 ×
6 × 6 
-centered k-point mesh. The computed optical and

0 5 10 15 20 25 30 35 40
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

ε
b
 = 3.18 

A
/C

 (
fF

−
1

μm
2 )

d (Å)

ε
b
 = 9.53 

FIG. 7. Inverse capacitances of the Au-MgO-Au capacitor under
bias voltage of 0.6 V are plotted with respect to the nominal
dielectric thickness for fixed (solid squares) and relaxed (open circles)
conditions.
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static dielectric constants are 3.18 and 9.59, respectively. These
values are in almost perfect agreement with our analysis of the
interface system, which indicates that the energies and forces
calculated from this method are reliable.

The negative y-axis intercept in Fig. 7 suggests the
existence of a negative dead layer,26 i.e., the capacitance
including interface effects is slightly larger than that expected
from the bulk dielectric constant. This agrees with previous
thoretical works on the Ag-MgO-Ag7,20 and Au-MgO-Au8,21

systems, which calculated the capacitance from polarization
induced by a constant external electric field.

C. Monolayer electrodes

An advantage of the OSA is that the treatment of na-
noelectrodes is relatively straightforward. To demonstrate
this, we performed calculations on MgO capacitors with
monolayer Au electrodes shown in Fig. 8(a). The electron
density corresponding to the states around the Fermi level is
shown in Fig. 8(b), and it is seen that there is no orbital overlap
between the two electrodes. The change in the electrostatic
potential due to bias application [Fig. 8(c)] is very similar to
that of the 8-layer electrode system when the structure is fixed.
On the contrary, when the structure is relaxed, a large dipole is
seen at the position of the monolayer electrodes. However, the
electrostatic potential difference between the electrodes is still
almost the same as the applied bias voltage. This shows that
even a monolayer of Au can act as a nearly perfect screening
medium. We also examined the dependence of the inverse
capacitance on the dielectric thickness (Fig. 9). The slope is
identical to that of the 8-layer electrode system, but the y

intercept is slightly lower. This indicates that the capacitance
is slightly larger than the 8-layer system. This is possibly due
to the change in the interaction between the electrode and
the dielectric as a function of electrode thickness. The

Au
O
Mg

x

z
1.5−3.0 nm

(7, 9, and 13 layers)
1.8−2.2 nm

(a)

(b)

0 10 20 30 40 50 60
0.00
0.02
0.04
0.06

0 10 20 30 40 50 60
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

ΔV
H (

eV
)

z (Å)

 Fixed
 Relaxed

(c)

Au ML Au MLMgO

z (Å)

1.8−2.2 nm

de
ns

ity
 (Å

−3
)

Lo
ca

l

FIG. 8. (Color online) (a) Schematic of the MgO capacitor with
monolayer Au electrodes, (b) electron density corresponding to the
states at ±1 eV around the Fermi level under zero bias, and (c)
the xy-plane average of the change in the electrostatic potential due
to bias application for fixed (solid line) and relaxed (dashed line)
structures.
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FIG. 9. Comparison of the inverse capacitance of MgO capacitors
with 8-layer (solid squares) and monolayer (open circles) Au
electrodes.

difference is subtle, however, and we do not have any concrete
results that clarify the mechanism for this behavior.

D. Quantum capacitance of graphene electrodes

As mentioned earlier, the total capacitance is comprised of
the classical geometric capacitance (∝ε/d) as well as quantum
corrections arising from the kinetic, exchange-correlation,
and electron-phonon interaction energies in the total-energy
functional.4 Here, we investigate the applicability of our
method for studying such effects using graphene-vacuum-
graphene capacitor as an example. It has been pointed out
that the quantum capacitance of graphene would become
comparable to the classical geometric capacitance when using
nanometer-thickness dielectrics. This is due to the band
structure of graphene, which has a linear dispersion with
vanishing DOS at the Fermi level. Fang et al. derived the
kinetic term for kbT � eVch as

Ckin

A
	 e2 2

π

eVch

(h̄vF)2
, (17)

where Vch is the channel potential and vF is the Fermi velocity7

(they refer to this term as the quantum capacitance). eVch is
the displacement of the Fermi level due to the charging of the
graphene sheet. If we consider only the kinetic term as quantum
corrections, then the total capacitance can be written as a series
capacitor comprising of the geometric capacitance Cgeo and
the kinetic capacitance Ckin coming from the two graphene
electrodes. This results in the following total capacitance
density as a function of bias voltage:

C

A
= e

A

dn

dV
= Cgeo

A

[
1 −

(
1 + 1

2

ngeo

nkin

)− 1
2
]
, (18)

where ngeo = CgeoV/(eA) is the charge density one would
obtain by only considering the geometric capacitance, and
nkin = (π/2)[Cgeoh̄vF/(e2A)]2 is the term that arises due to
the consideration of the kinetic capacitance. By integrating
Eq. (18), we obtain the charge density [n = Q/(eA)] as a
function of voltage V :

n =
∫ V

0

C dV ′

eA
= ngeo − 4nkin

[
−1 +

(
1 + 1

2

ngeo

nkin

) 1
2
]
.

(19)
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FIG. 10. (Color online) (a) Schematic of the graphene-vacuum-
graphene capacitor, (b) xy-plane average of the electron density
obtained by integrating the states between ±1 eV around the Fermi
level under zero bias, (c) xy-plane average of the induced charge
density at various values of applied bias, and (d) xy-plane average
of the electrostatic potential difference with respect to zero bias. The
dashed vertical lines correspond to the position of the graphene sheets.

Let us see how well this can describe our results.
Figure 10(a) shows the schematic of our model system (two
graphene sheets placed 1 nm apart). Since a very accurate
Fermi surface is necessary for evaluating the quantum capac-
itance, we employed a rather dense 161 × 161 k-point mesh
for these calculations. The local electron density around the
Fermi level [Fig. 10(b)] is zero at the position of the graphene
sheet reflecting the π character of the KS orbitals. The induced
charge density profile in Fig. 10(c) has two maxima, which is
also related to the π character. The electrostatic potential in
Fig. 10(d) does not correspond to the applied bias voltage
unlike the previous examples. For example, for V = 1.0 V,
the electrostatic potential difference between the two graphene
sheets is 0.61 eV. This means that the quantum capacitance
has a big impact on the total capacitance in this system.
Figure 11(a) shows the accumulated charge and the energy
increase as a function of bias voltage. We fitted the result to
Eq. (19) for V � 0.4 V and obtained the Fermi velocity of
vF = 0.77 × 108 cm/s. This is in fairly good agreement with
that evaluated from the linear band structure within 0.1 eV
from the Fermi level (0.85 × 108 cm/s). We also obtained
a value of 10.8 fF/μm2 for Cgeo/A. This corresponds to an
effective vacuum thickness of 0.82 nm. In comparison to
the Au-vacuum-Au capacitor examined earlier, the effective
surface is closer to the graphene sheet (�/2 = 0.9 Å in
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FIG. 11. (a) The accumulated charge of the graphene-1 nm
vacuum-graphene capacitor (black squares) and total-energy change
(white circles) as a function of bias voltage. (b) The capacitance
calculated from voltage vs energy (white circles) and voltage vs
induced charge (black squares). The dashed line indicates the
geometric capacitance obtained from the V –Q curve.

comparison to �/2 = 1.5 Å for Au). This can be explained
by the field penetration into the electrodes, as well as the
smaller atomic radius of carbon. In Fig. 11(b), we plot the
total capacitance evaluated using the charge Eq. (11) and
the energy Eq. (12) as a function of bias voltage. The two
evaluation methods yield virtually the same results above
V = 0.3 V (differences are less than 0.7%). The deviation
at low voltages can be at least partially attributed to the small
changes in the induced charge and energy with respect to
bias voltage; smaller values make the numerical evaluation of
derivatives using finite differences prone to more noise. The
solid curve in Fig. 11(b) is obtained from Eq. (18) based on the
parameters extracted from the fit to the V –q curve mentioned
above (vF = 0.77 × 108 cm/s, Cgeo/A = 10.8 fF/μm2). It is
seen that the numerical results are described well by Eq. (18),
which considers the kinetic capacitance. This shows that the
OSA captures the quantum effects on the capacitance.

IV. CONCLUSION

In this paper, we proposed an orbital-separation approach
(OSA) for simulating the effect of bias voltage within
the Kohn-Sham formalism of density-functional theory. The
method is robust and efficient, and is readily implemented
in existing KS-DFT codes. This approach is unique in that
it provides a well-defined total energy of the charged MIM
capacitor. Test calculations were performed on Au-vacuum-
Au, Au-MgO-Au, and graphene-vacuum-graphene capacitors
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to verify the accuracy and reliability of the method. We showed
that the capacitance can be calculated from the voltage-energy
relation, and that the interface effects on the capacitance can
be evaluated by examining the dependence on the dielectric
thickness. Both static and optical responses to bias voltage
were calculated reliably, testifying to the accuracy of the total
energy and the forces obtained using this method. Moreover,
we showed that quantum effects on the capacitance can be
evaluated as well. Owing to its robustness and efficiency, the
OSA holds much future promise for application to a wide range
of problems where bias voltage is an important factor including
(but not limited to) interfacial capacitance, electrochemical
reactions, and scanning probe microscopy.
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APPENDIX: NUMERICAL CRITERIA
FOR SEPARATING KS ORBITALS

As mentioned above, a thick enough insulator ensures
that the KS orbitals near the Fermi level are well separated
into two electrodes. However, KS orbitals are never exactly
zero anywhere in space. Thus, we need to employ numerical
criteria to judge whether each KS orbital belongs to the left
or right electrode.

The numerical criteria that we use are as follows: we
separate the unit cell of the MIM system into three parts,
left (L), center (C), and right (R), where each part roughly
coincides with the left electrode + vacuum, insulator, and
right electrode + vacuum, respectively (the central part can
be thinner than the actual insulator slab to account for metal-
induced gap states). We assign the normalized KS orbital ψi

to the left (right) electrode if
∫

L(R)
|ψi |2 d3r > 0.75 (A1)

and ∫
L(R)+C

|ψi |2 d3r > 0.99. (A2)

The first criterion ensures that the orbital originates mostly
from the left (right) electrode and not from the insulator or
the right (left) electrode. The second criterion accounts for
some penetration of the orbital into the insulator. In practice,
we sometimes impose a much less strict criterion during self-
consistent iterations, as non-self-consistent orbitals are not
always well separated into each electrode; in the most extreme
case, we can assign ψi to the left (right) electrode if

∫
L(R)

|ψi |2 d3r >

∫
R(L)

|ψi |2 d3r. (A3)

In this case, we monitor how well the KS orbitals are
separated during self-consistent iterations using the criteria of
Eqs. (A1) and (A2) (or possibly even stricter ones). Although
the separation may not be ideal at the beginning, it improves
as the calculation progresses. The criteria of Eqs. (A1) and
(A2) were met at the end of the self-consistent iterations for
all of the examples described in this paper. Also, we did not
face difficulties due to degeneracy when we started from the
ground-state electron density under a small external field as
mentioned in the main text. This is because the eigenenergy
spectrum for each k point is rather discrete, so there is very little
chance of accidental degeneracy between the electrodes when
the charge distribution is asymmetric. However, if we use high
densities of k points or huge unit cells where the eigenenergy
spectrum for each k point is nearly continuous, some accidental
degeneracy may occur that could pose problems. In such cases,
one may perform a unitary transformation to separate the
orbitals.
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