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A B S T R A C T

Heterojunction catalyst can facilitate efficient photoelectrochemical (PEC) hydrogen evolution by reducing a po-
tential barrier for charge transfer at the semiconductor/electrolyte interface. Such a heterojunction effect at the
atomic thickness limit has not yet been explored although it can be strengthened because of strong built-in field and
ultrafast charge transfer across the junction. Here, we first investigate a novel strategy to boost the hydrogen evo-
lution performance of the p-type WSe2 photocathode via reducing the overpotential with an atomically thin het-
erojunction catalyst comprising MoS2 and WS2 monolayers. To unveil an effective role of the heterojunction by
isolating its kinetic contribution from other collective catalytic effects, we develop and utilize an in situ scanning PEC
microscopy, which enables the spatially-resolved visualization of the enhanced photocatalytic hydrogen evolution
performance of the heterojunction. Notably, significant reduction in overpotential, from +0.28 ± 0.03 to
−0.04 ± 0.05 V versus (vs.) the reversible hydrogen electrode (RHE), is achieved when the MoS2/WS2 hetero-
junction is introduced as a catalyst even without intentional generation of catalytic sites. As a result, the photocurrent
of ~4.0mA cm−2 occurs even at 0 V vs. RHE. Furthermore, the beneficial effect of the atomically scaled vertical
heterojunction is explained by the built-in potential resulted from efficient charge transfer in type-II heterojunctions
with the support of first-principles calculations. Our demonstration not only offers an unprecedented approach to
investigating the fundamental PEC characteristics in relation to the tailored properties of a catalyst but also proposes
a new catalytic architecture, thereby enabling the design of highly efficient PEC systems.

1. Introduction

The demand for new catalytic materials and/or architectures toward
realizing efficient photoelectrochemical (PEC) hydrogen generation is in-
satiable [1–8]. Recently, two-dimensional (2D) layered transition metal

dichalcogenides (TMDs) such as MoS2 have emerged as promising candi-
dates for nonprecious and earth-abundant catalysts [2–4,9–19]. In parti-
cular, the atomic edges of the layered structure have been identified as a
thermodynamically active site, and thus considerable research efforts have
been devoted to maximizing such catalytic sites for efficient hydrogen
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evolution reaction (HER) [11–14,18–23]. To fully exploit large surface-to-
edge ratio of 2D materials, additionally, the inert basal planes of those
layered structures have been activated via creating atomic vacancies or
incorporating catalytic dopants [24,25]. Particularly for solar-driven
photoelectrode applications, using surface-activated atomically thin planar
catalysts can be desirable because it offers synergetic advantages in con-
currently achieving high light absorption and effective surface passivation
of underlying photoactive semiconductors as well as fully utilizing large
active area [16,22].

In addition to the optimization of thermodynamically active sites, to
further improve the PEC performance, the photoexcited charges must
be efficiently separated and transferred from the solid-state photo-
cathode to the liquid-phase electrolyte. In pursuit of this goal, many
previous studies have attempted to utilize heterojunctions that form a
staggered alignment between the conduction band edge of a p-type
semiconductor and the hydrogen reduction potential (-qE° (H+/H2))
[5,6], promoting electron transfer at the interface. In this respect, the
ability to build band-engineered heterostructures using various TMDs
with different band alignments and ultrafast charge transfer in those
atomically thin heterojunctions can offer unexplored opportunities to
optimize the interfacial kinetics of photoelectrolysis [26–29]. Never-
theless, such exceptional capability of TMD heterojunctions have rarely
been employed to boost charge transfer at the semiconductor/

electrolyte interface, and their roles in HER have not yet been revealed
due to experimental challenges in excluding various catalytic effects
during typical PEC measurements.

Here, we first explore the possibility of utilizing an atomically thin
TMD heterojunction as a catalyst to reduce the overpotential for the
HER on a p-type semiconductor photocathode. The enhanced HER
performance by the heterojunction catalyst is successfully visualized by
using spatially resolved in situ PEC characterization platform. The
newly developed methodology allows us to characterize the photo-
catalytic HER performance of the atomically thin heterojunction while
excluding the collective effects of various active sites that may exist in
these layered materials.

2. Results and discussion

Fig. 1a shows the schematic band diagram of a model system used in
this study, illustrating that an atomically thin heterojunction catalyst
can reduce the overpotential for the HER. The system consists of a
monolayer MoS2/WS2 heterojunction as the catalyst and underlying
~80 nm-thick WSe2 layers with a bottom graphene electrode as the
photocathode. The MoS2/WS2 heterojunction on the p-type WSe2 layer
is theoretically predicted to form a cascade band alignment. The edge
positions of conduction band minimum and valence band maximum of

Fig. 1. Atomically thin heterojunction catalyst for HER on a p-type semiconducting photocathode. (a) Band diagram (left) and schematic (right) of a pho-
tocathode with the monolayer MoS2/WS2 heterojunction as a catalyst and underlying ~80 nm-thick WSe2 layers with a bottom graphene electrode. The staggered
type-II band alignment can promote the separation and transport of photoexcited electrons from the light-absorbing WSe2 layer to the electrolyte. (b) General
changes in Gibbs free energy according to the reaction progress with (red solid line, ΔG2) or without (black solid line, ΔG1) the monolayer MoS2/WS2 heterojunction
catalyst. (c) Line profiles of height of monolayer MoS2 (top), monolayer WS2 (middle), and ~80 nm-thick WSe2 (bottom). (d) Optical image (top) and merged PL
mapping image (bottom) of the fabricated heterostructure. Red, blue, gray, and yellow dashed lines indicate the boundaries of WS2, MoS2, WSe2, and graphene,
respectively. In the PL map, red and blue correspond to the direct bandgap transition at 2.00 eV for WS2 and 1.85 eV for MoS2, respectively. Scale bars are 10 μm. (e)
Raman spectra of the MoS2/WS2/WSe2 heterostructure (black solid line), monolayer MoS2 (blue dashed line), monolayer WS2 (red dashed line) and ~80 nm-thick
WSe2 (gray dashed line) (left). Squares, triangles, and a star in gray (WSe2), red (WS2), and blue (MoS2) represent the E12g, A1g, and 2LA(M) modes respectively. (f) PL
spectra of the MoS2/WS2/WSe2 heterostructure (black solid line), monolayer MoS2 (blue dashed line), and monolayer WS2 (red dashed line) (right). Blue and red
circles represent the direct bandgap transition at 1.85 and 2.00 eV for MoS2 and WS2, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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TMDs are drawn using theoretically calculated values in the previous
literature [26]. The resultant type-II band alignment can facilitate the
separation and transport of photoexcited charges from the light-ab-
sorbing WSe2 layer to the electrolyte. Importantly, because both the
MoS2 and WS2 layers are atomically thin, the depletion region is dis-
tributed throughout the entire junction with a thickness of ~1.4 nm,
generating a substantial built-in potential [27,28]. The resulting elec-
tric field at the electrolyte/photocathode interface is expected to sig-
nificantly improve the efficiency of the HER by reducing the potential
barrier (ΔG) required for hydrogen reduction reaction [2H+ + 2e− →
H2] (Fig. 1b). Note that such interfacial engineering at the atomic
thickness limit is possible due to the formation of pinning-free van der
Waals (vdW) interfaces between layered TMD materials [30]. However,
the use of photoactive materials is not restricted to semiconducting
TMDs as long as it forms the appropriate band alignment.

We fabricated the designed model system composed of MoS2/WS2/
WSe2/graphene heterostructures using mechanical transfer and se-
quential vdW stacking of exfoliated or chemical vapor-deposited con-
stituent layers (see the details of the device fabrication procedure in
section S1) [31,32]. Before the mechanical transfer, the thickness of

monolayer MoS2, monolayer WS2 and the thick WSe2 layer were con-
firmed by atomic force microscopy (Figs. 1c and S3). As shown in the
optical image in Fig. 1d, the fabricated heterostructure contains three
spatially distinct regions, namely, MoS2/WS2/WSe2, MoS2/WSe2, and
WSe2, which allows us to investigate the catalytic effects of differently
stacked heterostructures on the HER without experimental sample-to-
sample variations in the subsequent PEC measurements.

The vertically stacked heterostructure is characterized by Raman
and photoluminescence (PL) spectroscopy. All the spectral features of
383.04 (E12g) and 401.64 (A1g) cm−1 of monolayer MoS2 (the frequency
differences of 18.64 cm−1), 351.92 (E12g) and 417.14 (A1g) cm−1 of
monolayer WS2 (the frequency differences of 66.23 cm−1), and 249.39
(E12g and A1g) cm−1 and 259.92 (2LA(M)) cm−1 of bulk WSe2, were
clearly observed (Fig. 1e), confirming the formation of the MoS2/WS2/
WSe2 heterostructure [33,34]. In addition, in the PL spectra of Fig. 1f,
the direct bandgap emissions from individual monolayer MoS2
(1.85 eV) and monolayer WS2 (2.00 eV) are clearly visible, as shown in
the PL mapping image in Fig. 1d, but strongly quenched at the stacked
area by an order of magnitude in their intensities. This indicates that
ultrafast charge transfer spontaneously occurs as a result of the cascade

Fig. 2. Spatially resolved PEC characterization for visualizing photocatalytic activities. (a) Schematic illustration and (b) Photograph of the measurement with
a 532 nm laser and a mapping stage. (c) Schematic of the SPECM measurement set-up, combining scanning photocurrent microscopy with a standard three-electrode
electrochemical measurement. A copper electrode contacting the device, Pt, and the saturated calomel electrode are used as the working, counter, and reference
electrodes, respectively. The home-designed reaction bath is illuminated by a 532 nm laser from above. (d) Photograph of the PMMA-passivated device on the SiO2/Si
substrate covered with the PDMS (O-ring). The device is electrically connected to a copper electrode through an In wire. (e) Optical image of the microfabricated
device with lithographic opening. (f) Photocurrent mapping image of the device at 0 V vs. RHE. In (e) and (f), the blue dashed line, the white dashed line, and the
yellow dotted line indicate the boundaries of MoS2, WS2, and the lithographic opening area, respectively. Scale bars in (e) and (f) are 10 μm. (g) Schematic side view
of the device along the green dashed line in (f) (top) and corresponding line profiles of photocurrent along the dashed lines in (f) (bottom). Green and black line
profiles are obtained along the green and white dashed lines in (f), respectively. Red shaded regions between red dashed lines indicate the MoS2/WS2 heterojunctions.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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band alignment formed in the MoS2/WS2/WSe2 heterojunctions as
theoretically predicted (inset of Fig. 1a), which is also consistent with
previous experimental results in this type of heterostructure with the
staggered band alignment [27–29]. The charge transfer and interaction
between the layers are further investigated by using scanning Kevin
probe microscopy (SKPM) and X-ray photoelectron spectroscopy (XPS)
(see the details of results and discussions in the section S5 and S7). It is
also worth noting that the incident light is mostly absorbed by the
underlying WSe2 photocathode while absorption by the top catalyst
consisting of MoS2 and WS2 monolayers is relatively negligible (see the
reflection spectra in Fig. S5).

To carefully prove our hypothesis that an atomically thin hetero-
junction catalyst can reduce the overpotential for the HER, we first
developed a spatially resolved PEC characterization platform em-
ploying an in situ microscopic photocurrent mapping technique com-
bined with standard three-electrode electrochemical measurements in a
home-designed reaction bath (Fig. 2a and b). In the case of commonly
used PEC measurements with large-area photoelectrodes under global
illumination, the exact correlation of PEC performance with the specific
properties of the heterostructures and study of the corresponding HER
mechanism are difficult due to the ensemble averaging effects of

various active sites such as step edges, vacancies, and grain boundaries,
as well as other extrinsic factors including contact resistances, the
number of layers, and local strains [11,12,23,25,35–41]. To address
such an issue, we used a specialized set up for scanning photoelec-
trochemical microscopy (SPECM) measurements as schematically de-
scribed in Fig. 2c. For the microscale PEC measurements, the active
area directly exposed to the electrolyte solution could be defined
roughly by an elastomeric O-ring and constricted specifically by litho-
graphic patterning of the microfabricated device (photographs in
Fig. 2d and e). Then, while the focused laser scans over the exposed
area using either a motorized microstage or a scanning mirror, the
photocurrent generation is measured and mapped according to the
position of the laser spot. The focused spot size is less than ~1.0 μm in
diameter and the incident power is as low as ~100 nW to exclude
photothermal effects caused by local heating [42]. This analysis enables
the spatially resolved PEC imaging and visualization of the photo-
catalytic activities on different catalytic surfaces.

To clearly reveal the effects of the TMD heterojunction on the HER
compared to those of the single TMD layer, as shown in Fig. 2e, we
fabricated the device with a lithographic opening that contains only the
MoS2 and MoS2/WS2 regions. The patterned area exposes the same

Fig. 3. Spatially defined PEC characterization on different catalytic surfaces under global illumination. (a) Optical images and schematic side views of the
devices with circular opening patterns (radius= 2 μm) corresponding to MoS2/WS2/WSe2 (left), MoS2/WSe2 (middle) and no catalyst (bare WSe2, right) areas. Scale
bars are 10 μm. (b) Photograph of the measurement under global illumination with a solar simulator. (c) Polarization curves (bottom panel) and statistics of the
overpotential (top panel) of each structure. (d) Polarization curves of the MoS2/WS2/WSe2 heterostructure measured in the dark (red dashed line) and under 1 Sun
illumination (red solid line). Inset: Tafel slope in the dark plotted as log (J) against potential vs. RHE. (e) Nyquist impedance plots of each structure under
illumination at −0.14 V vs. RHE from 350 kHz to 0.1 Hz. The semicircular traces represent the fitting curves using the inset equivalent circuit including the charge-
transfer resistance (R1) across the graphene/TMDs heterostructures and charge-transfer resistance (R2) from the topmost TMD layer to the electrolyte. The inset is the
magnified graph of the dashed box. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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MoS2 basal surface to the electrolyte solution while the poly (methyl
methacrylate) (PMMA) layer passivates the edges of MoS2 (or WS2).
This configuration enables direct comparison between the MoS2/WS2
heterojunction and the monolayer MoS2, eliminating the catalytic ef-
fects of other active sites such as edges. Fig. 2f shows the photocurrent
mapping image obtained at 0 V versus (vs.) the reversible hydrogen
electrode (RHE). In the map, negligible photocurrent (< 1 pA) is
measured from the PMMA-passivated area (the black colored line
profile in Fig. 2g), and the differently stacked regions are clearly dis-
tinguished from the opened area. The photocurrent generated from the
overlapped MoS2/WS2 area is approximately 10 times higher than that
from the MoS2 area. This result indicates that the HER is more strongly
activated on the MoS2/WS2 than on the MoS2 surface as we hypothe-
sized. For this particular device, as presented in the photocurrent line
profile of Fig. 2e (green colored line), two MoS2/WS2 regions that are
~2–3 μm apart are spatially resolved in the photocurrent map.

The spatial resolution achieved in our measurements is approxi-
mately a few micrometers although there is the slight drift in the
mapping image presumably due to light scattering and stage drift
during the scanning measurement inside the electrolyte solution. This
value is even higher than that of scanning electrochemical microscopic
measurements over the strained MoS2 basal plane with sulfur vacancies
[40] although it is slightly lower than those (~1 μm) from photocurrent
mapping in typical solid-state devices. Nevertheless, it turned out that
the developed SPECM can be universally exploited to characterize how
the PEC performances are affected by other factors such as thickness of
the heterojunction and presence of edges on the heterojunction (see
additional PEC mapping results in Figs. S7 and S8). Although we fo-
cused on the atomically thin heterojunction in this work, it is worth
noting that the heterojunction effect became worse when the few-
layered WS2 instead of the monolayer was used to form the hetero-
junction due to large charge-transfer resistances for layer-to-layer
hoping and weak built-in field (see Fig. S7).

To clarify the enhanced HER at the heterojunction and obtain fur-
ther quantitative analyses, we performed spatially defined PEC

characterization with an almost identical platform except with a global
illumination source instead of a focused scanning laser. For these
measurements, we exposed only the specific area including the het-
erostructure of interest. Fig. 3a shows optical images and schematic side
views of the microscale devices with different circular opening patterns
(radius= 2 μm) corresponding to the MoS2/WS2/WSe2, MoS2/WSe2,
and WSe2 areas. Using those devices, the HER performance was then
measured under global illumination with a solar simulator (Fig. 3b),
and the representative polarization curves of each structure were pre-
sented in Fig. 3c. Obviously, the onset potential shifts to lower values
upon the introduction of the MoS2 and MoS2/WS2 catalysts on the WSe2
photocathode. The statistically obtained overpotentials at a photo-
current density of 1mA cm−2 are +0.28 ± 0.03, +0.10 ± 0.02, and
−0.04 ± 0.05 V vs. RHE for the no catalyst (bare WSe2), MoS2, and
MoS2/WS2 surfaces, respectively (top panel of Fig. 3c). These results
clearly indicate that the significant reduction in overpotential is
achieved solely by the heterojunction without surface activation, and
the value is even smaller than those of 2H-phase MoS2 edges on the p-Si
photocathode [22].

In addition, as shown in Fig. 3d, the WSe2 photocathode with the
MoS2/WS2 heterojunction catalyst exhibits a significant photoresponse
with the reduced overpotential, and the photocurrent of 4.0 mA cm−2

thus occurs even at 0 V vs. RHE. The dark current is smaller than the
photocurrent by more than an order of magnitude, and the Tafel slope
is estimated to be ~97mV dec−1, as plotted in the inset of Fig. 3d. A
value higher than 39mV dec−1 suggests that the HER mechanism is still
dominantly determined by Heyrovsky or Volmer reactions because the
MoS2 basal surface has not been intentionally activated by the gen-
eration of additional catalytic sites other than naturally existing sulfur
vacancies [23,41]. The Tafel slope is very similar for the monolayer
MoS2, at ~110mV dec−1, but this value is approximately three times
smaller than that of the bare WSe2 surface (Fig. S10), implying that the
hydrogen adsorption energy on the MoS2 basal surface may not be
significantly altered by the underlying WS2 layer that forms the het-
erojunction. This is consistent with the previously reported first-

Fig. 4. DFT calculation. (a) A model system for the MoS2/WS2/WSe2 heterostructure. (b) Built-in potential of the MoS2 (blue circle) and the MoS2/WS2 hetero-
junction (red circle) the on p-type WSe2 layer as a function of doping concentration, respectively. The solid lines represent the fitting lines. (c) and (d) The x-y plane-
averaged electrostatic potential (middle panel), the enlarged potential in vacuum regions (top panel), and the x-y plane-averaged charge density difference (Δn)
(bottom panel) of (c) the MoS2/WS2/WSe2 heterojunction and (d) the MoS2/WSe2 heterojunction. The built-in potential (Vbi) values are indicated by arrows in the
graphs. In the calculation, MoS2 and WSe2 are electron-doped and hole-doped semiconductors, respectively, with doping concentrations of 5.56×1012 cm−2, and
WS2 is an intrinsic layer. The integral charge values in both structures are equal to zero. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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principles calculations; the sulfur vacancy, the widely accepted active
site on the basal plane of MoS2, develops defect levels deep in the band
gap [43]. Since the charge transfer from MoS2 to the underlayers occurs
with doped electrons close to the conduction band, the charge dis-
tribution at the sulfur vacancy would be largely unaffected, resulting in
similar hydrogen adsorption energy regardless of the amount of charge
transfer. This explanation also implies that the MoS2/WS2 heterojunc-
tion could lead to the electrostatic reduction of the overpotential at the
electrolyte/photocathode interface without intentional generation of
active sites on the MoS2 surface.

This enhancement of the PEC performance can be further confirmed
by electrochemical impedance spectroscopy (EIS) to measure the
charge-transfer resistance at the interfaces. Fig. 3e presents the Nyquist
plot of each structure, showing two components, the charge-transfer
resistance (R1) from the electrode to the semiconductor and the charge-
transfer resistance (R2) from the semiconductor to the electrolyte. Due
to the atomically thin thickness of MoS2 and WS2, the charge-transfer
resistances across the layers from WSe2 to MoS2 are negligible. For all
three structures, R1 values less than 2 Ω cm2, indicated by small semi-
circles in the plots, are very low because of the good electrical contact
between the WSe2 and the graphene. On the other hand, the R2 value
for the MoS2/WS2 (18 Ω cm2) is considerably lower than those for the
other structures (490 and 1,200 Ω cm2 for MoS2 and WSe2, respec-
tively). This result strongly suggests the improvement of the HER ki-
netics in the atomically thin heterojunction, which is consistent with
the observed reduction in the overpotential. Note that the enhanced
PEC performances in terms of overpotential and charge-transfer re-
sistance are repeatedly measured from our samples. The stability of the
catalyst during a series of PEC measurements including SPECM is
confirmed by comparing the Raman spectra before and after the mea-
surement. Raman peaks of each constituent layer are preserved without
noticeable peak shift and degradation (see Fig. S9).

To support the experimentally observed results, theoretical mod-
eling was carried out using the first-principles calculations based on the
density functional theory (DFT) (see the details of DFT calculation in
section S12). We investigated the generation of the built-in potential
(Vbi) as a result of charge transfer within the atomically thin TMD
heterojunction, which eventually leads to reduced overpotential.
Fig. 4a is a modeling system for the MoS2/WS2/WSe2 heterostructure.
In this model, MoS2, WS2, and WSe2 are assumed to be electron-doped,
undoped, and hole-doped, respectively, which may be reasonable ac-
cording to previous literature [44]. Fig. 4b plots the calculated Vbi of
the MoS2 (blue circle) and the MoS2/WS2 heterojunction (red circle) on
the WSe2 layer as a function of doping concentration. Once the het-
erojunctions are formed, electrons transfer from MoS2 to WSe2, devel-
oping Vbi across the heterojunction. The Vbi increases linearly as the
doping concentration increases, and the values for the MoS2/WS2 het-
erojunction are always larger than those of the MoS2 regardless of
doping. Especially at the concentration of 5.56× 1012 cm−2 for both n-
type MoS2 and p-type WSe2, the electrostatic potential profiles of the
MoS2/WSe2 and MoS2/WS2/WSe2 heterojunctions are shown in Fig. 4c
and d, respectively. The values of Vbi measured by the potential dif-
ference between the left and right vacuum level are 195 and 71meV for
MoS2/WS2/WSe2 and MoS2/WSe2, respectively. The larger Vbi for
MoS2/WS2/WSe2 than for MoS2/WSe2 is consistent with the surface
potential measured by SKPM (Fig. S4) and the observed reduction in the
overpotential. The charge transfers from MoS2 to WSe2 can be eval-
uated by the plane-averaged electron density difference (see bottom
panels of Fig. 4c and d) and are ca. 0.5e per dopant in both structures.
Even though the amount of charge transfer is similar, Vbi is larger when
WS2 is inserted because of the increased distance between the positive
and negative charges. That is, the charge-neutral WS2 layer acts as a
pure dielectric medium in the simple capacitor model. Since this en-
hancement of Vbi in the presence of a dielectric WS2 layer is based on a
general principle of electrostatics, it should effectively apply to any
doping level.

3. Conclusion

In summary, we successfully demonstrated that an atomically thin
heterojunction can be employed as an HER catalyst to reduce an
overpotential through specialized PEC measurements that enable spa-
tially resolved characterization on different catalytic surfaces or ar-
chitectures. The built-in potential generated by the atomically thin
TMD heterojunctions is dominantly responsible for significant reduc-
tion in both overpotential and charge-transfer resistance. This offers an
unexplored strategy to improve photocatalytic activities by engineering
the interfacial kinetics of charge transfer in addition to optimizing the
thermodynamics of active sites. Our demonstration represents a model
system that can be applied to the study and design of atomically thin
catalysts for a variety of light-driven electrochemical processes, in-
cluding solar-to-fuel conversion.

4. Experimental section

4.1. Device fabrication

Microscale devices composed of TMD and graphene layers, acting as
a photocathode, were fabricated on the SiO2/Si substrate with pre-
patterned electrodes using typical mechanical transfer and vdW
stacking techniques. Monolayer MoS2 grown by chemical vapor de-
position (CVD) [32] and monolayer WS2, few-layer WSe2, and few-layer
graphene exfoliated from single crystals were used as constituent layers.
Few-layer graphene was employed in the device as a contact electrode
to reduce the contact resistance. The electrical contact between the
graphene and the prepatterned electrode is formed by e-beam litho-
graphy and metal evaporation (Au/Pd/Cr (40/15/3 nm)). Then, to ex-
pose the areas of interest for the subsequent PEC measurements, we
performed additional e-beam lithography.

4.2. Material characterization

Raman and PL spectra were obtained using a home-built spectro-
meter equipped with a monochromator (Andor, SOLIS 303i) and an
excitation laser of 532 nm. The signal was collected by an objective lens
(NIKON 100× , N.A.= 0.9), and dispersed by 1,200 and 300 line
mm−1 gratings for Raman and PL measurements, respectively. Atomic
force microscopy (Park systems, XE-10) was performed to identify the
surface morphology and thickness of each layer of the TMDs and gra-
phene and to measure the surface potentials of the heterostructures
with a conducting cantilever tip. Reflection measurements were per-
formed at room temperature using broadband emission from a super-
continuum laser (Fianium, sc-400), in conjunction with a beam splitter
and an objective (50× , N.A.= 0.8). XPS (ULVAC-PHI, X-tool) was
performed with Al Kα X-ray source (1486.6 eV) under ultrahigh vacuum
(~10−10 Torr).

4.3. Spatially resolved and spatially defined PEC measurements

All PEC measurements were performed by an Ivium potentiostat
(Ivium Technologies, Compact-stat) with a three-electrode system using
a Pt wire as a counter electrode, a saturated calomel reference electrode,
and a working electrode in a 0.5MH2SO4 standard electrolyte solution.
The three-electrode system was built inside a home-designed reaction
bath. For scanning photocurrent measurements, we used a 532 nm laser
with a motorized microstage or Galvano mirrors. Photocurrent was
measured at constant voltage (0 V vs. RHE) using a lock-in amplifier
(Stanford Research Systems, SR830) with an optical chopping frequency
of ~100Hz. A Xe arc lamp calibrated to an output power of
100mW cm−2 (corresponding to the AM 1.5 G condition) was used as a
global illumination source. A scan rate of 10mV s−1 was used for the
linear sweep. EIS was conducted by applying a constant potential of
−0.14 V vs. RHE with a sweeping frequency from 350 kHz to 0.1 Hz.
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4.4. DFT calculation

The first-principles calculations were performed using Vienna Ab initio
Simulation Package (VASP) [45]. The generalized gradient approximation
was employed for the exchange-correlation functional [46] for electrons
and the energy cutoff for the plane-wave basis set was 300 eV. The van der
Waals interaction was included empirically [47]. A vacuum slab with a
thickness of 18Å was inserted, and the dipole correction was used to re-
move spurious interaction within the periodic boundary condition. Because
of lattice mismatch, we used 11.4×11.4 and 16.4×16.4Å2 for undoped
MoS2/WSe2 and MoS2/WS2/WSe2 heterostructures, respectively, by ap-
plying a lattice strain of ~0.1%. To simulate the built-in potential as a
function of doping concentration, we further expanded the lateral peri-
odicity for MoS2/WSe2 and MoS2/WS2/WSe2, and replaced Mo (W) atoms
with Re (Nb) for electron (hole) doping. For k-point sampling, 3×3×1
grid was used for undoped systems and reduced with respect to the su-
percell size for doped systems. The atomic positions including the interlayer
distances of undoped systems were optimized, and we neglected atomic
relaxations in the presence of dopants because they are negligible .
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