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The effect of solvation

Using the implicit solvation model,S1,S2 we calculated the surface energy for Pt3Co (100)

surface (see TableS1). Due to the solvation effect, the surface energies are changed by 3–5

meV/Å2, which are at most only 5.8% of surface energies. Additionally, we also checked

the effect of solvation on vacancy formation energy for edge and vertex sites in a set of 10

distinct configurations, where most dissolution reactions could occur. For both Pt and Co

atoms, the mean absolute errors in the vacancy formation energy due to solvation effects were

0.029 eV and 0.065 eV, respectively (see Figure S2). These values are an order of magnitude

smaller than the vacancy formation energies themselves, confirming the negligible impact of

solvation on our system.

Table S1: The surface energy of the Pt3Co (100) slab system. NX is the number of atoms X
in the slab. Surface energies are written with a unit of meV/Å2.

NPt NCo
Without With

solvation effect solvation effect
Pt3Co slab with Pristine 72 18 85 90

Pt surface With Pt vacancy 70 18 91 95
Pt3Co slab with Pristine 63 27 122 125

Pt:Co of 1:1 With Pt vacancy 61 27 123 126
surface With Co vacancy 63 25 122 125

Figure S1: The effect of solvation on vacancy formation energy
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Details of off-lattice kMC simulation

Dissolution

The dissolutions of atom X (X=Pt or Co) atoms from Pt–Co alloy nanoparticles are defined

as follows:

PtnComX → PtnCom +X2+ (aq) + 2e− (1)

We obtain the activation barriers of dissolution reactions from the reaction energies using

the Brønsted-Evans-Polanyi (BEP) relation which assumes that the change in the activation

barrier is proportional to the reaction energy.S3 Mathematically, it is defined by the following:

Ea = E0 + α∆E, (2)

where Ea and ∆E are the activation barrier, and the energy difference, respectively, and E0

and α are fitting parameters. ∆E can be calculated using the following equation:

∆E = E (PtnCom) + E (PtnComX)− 2eUapp. + µ
(
X2+ (aq)

)
+ 2µSHE

(
e−

)
+ T∆Sdiss., (3)

where E (PtnCom) and E (PtnComX) are the energies of PtnCom and PtnComX nanoparti-

cles, respectively, and eUapp. is the energy of unit of electron charge, e, at applied voltage,

Uapp.. µ (X2+ (aq)) and µSHE (e
−) are the chemical potentials of X2+ (aq) and electrons,

respectively. T is the temperature, and Sdiss. is the entropy of dissolution. µ (X2+ (aq)) +

2µSHE (e
−) can be calculated using the standard electrode potential of bulk X atoms E0 (X):S4

µ
(
X2+ (aq)

)
+ 2µSHE

(
e−

)
= E (Xbulk) + 2eE0 (X) (4)

The parameters of the BEP relation are determined as follows. We assume that the reaction

energy ∆E is affected by only the applied electrode potential, then α can be interpreted as

the charge transfer coefficient in the Butler-Volmer equation. We adopt α as 0.3 from the
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experiment which evaluated α from fitting to the potential dependence of dissolution rate

of Pt3Co nanoparticles.S5 For a more accurate model, the parameter for the effect of the

initial configuration and the parameter for the effect of the applied electrode potential on

the activation energy should be dealt with separately.S6 However, we assume that two dif-

ferent sources affect the activation energy to the same extent for simplicity. The remaining

fitting parameters E0 of each element are set to 0.5 eV for Pt and 1.0 eV for Co. An attempt

frequency including the entropic term is set to 104 s−1, which is typically used for dissolution

reaction in other kMC simulations.S7 We have conducted multiple kMC simulations to inves-

tigate the sensitivity of our results to the chosen parameters. Figures S2a and S2b illustrate

the outcomes of sensitivity tests for the parameters α and E0, respectively, pertaining to

eq. S2. Notably, an increase in α to 0.4 barely influences the results, but a reduction to

0.2 demonstrates a noticeable shift. Regarding E0, altering the value for Co has a minimal

impact on the simulation, which can be attributed to the rapid removal of surface Co atoms

at the start of the simulation. In contrast, altering E0 of Pt produces considerable variations

in the results. To determine if shifts of these parameters challenge the qualitative conclusions

of our study, we charted the dissolution ratio evolution for nanoparticles of different shapes

with the adjusted parameters in Figure S2c. As can be seen, the trend mirrors what we have

presented in Figure 4c of the manuscript. We neglect the redeposition of dissolved atoms

due to its lower frequency compared to the former two reactions that dominate the evolution

of nanoparticles.S8

Diffusion

We constructed the spherical grid utilizing a Fibonacci lattice, which offers a nearly uniform

distribution of grid points over the sphere, compared to the latitude–longitude lattice (see

Figure S3).S9

For a predefined number of total points, Ntotal, the coordinates (Xi, Yi, Zi) for the ith

grid point are calculated using a radius r, as defined as follows:
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Figure S2: The effect of parameters for dissolution reaction. The dissolution ratios are shown
for various (a) α and (b) E0. E0 for the Co and Pt atoms are written in parentheses as (ECo

0 ,
EPt

0 ) with an eV unit. (c) The effect of E0 on durability on different shapes, where E0 for
the Co and Pt atoms are 1.1 and 0.4 eV, respectively.

Figure S3: The identical number of grid points on the different lattices. (a) Fibonacci lattice.
(b) latitude—longitude lattice.

Xi = rsin (θi) cos (φi) (5)

Yi = rsin (θi) sin (φi) (6)

Zi = rcos (θi) , (7)

where the θi and φi represent the azimuthal and zenith angles, respectively, and are given

by:

θi = arccos

(
1− 2i+ 1

Ntotal

)
(8)
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φi =
1 +

√
5

2
(2i+ 1) π (9)

Figure S3a shows the distribution of grid points for the Fibonacci lattices, each containing

360 points and a radius of 2.8 Å, which is the identical setting used in this study. This

corresponds to a surface point density of 3.65 Å−2. We did not allow finite thickness and

only generated a grid on the surface of a sphere with a radius of 2.8 Å.

We establish a cutoff value for the minimum interatomic distances as 2.2 Å, based on

the radial distribution function (RDF) derived from DFT MD simulations at 600 K for

the disordered Pt–Co alloys (see Figure S4). The first peak in the RDF exhibits a shift

with increasing Co concentration, indicative of a smaller atomic radius of Co relative to Pt.

Despite this, strong repulsive interactions prevent any atoms from coming closer than 2.2 Å.

Thus, we can assert with confidence that in our kMC simulations at 350 K, the interatomic

distances will not fall below 2.2 Å.

Figure S4: The radial distribution function of 600 K DFT MD trajectories of the disordered
Pt–Co alloys at the Co compositions from 0.1 to 0.4. The dashed line represents the atomic
distance at 2.2 Å.

Atoms with lower coordination numbers (CNs) frequently migrate to sites characterized

by higher CNs. To validate this observation, we conducted targeted tests in which configura-

tions with initial CNs of 3 or 4, originally omitted from our simulations, underwent geometry

optimizations to evaluate if their CNs remained unchanged (see Figure S5). Remarkably,

78% of configurations that started with a CN of 3, and 62% that started with a CN of 4,
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transitioned to higher-CN states upon relaxation. We further observe that these high-CN

states are also accessible from our initial grid points characterized by high CNs. Therefore,

the exclusion of low-coordinated sites does not compromise the ability of our method to

model effective reactions while offering significant computational efficiency.

Figure S5: The change of coordination number (CN) of 3- and 4-coordinated configurations,
which are rejected in the original simulations, upon structural relaxations.

To find an appropriate attempt frequency for accelerated kMC simulation, we check the

convergence of loss quantity as we increase the attempt frequency from 104 Hz. We set the

attempt frequency to 106 Hz because the attempt frequency of 106 Hz is high enough to

describe the loss quantity as accurately as a higher attempt frequency (see Figure S6).

Figure S6: Diffusion attempt frequency convergence test.
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Details of the training set

We have considered the following series of structures: i) distorted crystal structures with the

lattice constant scaled with the range of 5% around the ground state of Pt, Pt3Co, PtCo,

PtCo3, and Co, ii) MD snapshots, iii) vacancy diffusion pathways and iv) relaxation path

of multi vacancy structures. For distorted crystals, FCC (also HCP, if needed) phases of all

intermetallic compounds are calculated. The MD snapshots were sampled with an interval

of 0.1 ps from the 15 ps 600 K NVT simulation with 1—2 vacancies for bulk and surface,

respectively. The MD snapshots for the slab were taken from (100) and (111) slabs and

the lattice vectors of the periodic xy plane were set by Vegard’s law. For vacancy diffusion

pathways, NEB calculations were done with 7 images. A vacancy pair was chosen for bulk

multi-vacancy structures, up to the 4th neighbor. The multi-vacancy structures were added

to the training set to explain the vacancy-vacancy interactions. In order to efficiently sample

diverse defect configurations, we ensure that the training structures in the same category

(see Table S2) do not contain the same local environments of vacancies, which are defined

by the composition of the nearest-neighbor atoms.

Table S2: Categories for comparing the Co composition of nearest neighbors for vacancies

Category index Type # of vacancies
1 Bulk 1
2 Bulk 2
3 Surface (100) 1
4 Surface (100) 2
5 Surface (100) 3
6 Surface (100) 4
7 Surface (111) 1
8 Surface (111) 2
9 Surface (111) 3
10 Surface (111) 4

We evaluated changes in vacancy formation energies across different alloy compositions,

keeping the nearest-neighbor atoms fixed but varying the other atomic compositions. Figure

S7 presents the mean vacancy formation energies, supplemented by standard deviations, for
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configurations having identical nearest neighbors (Figures S7a and b represent the (100) and

the (111) surface, respectively). The data reveals that the standard deviations of the vacancy

formation energies are only 0.13 eV for the (100) surface and 0.10 eV for the (111) surface.

These deviations are notably smaller than the variations seen in the vacancy formation

energy across variable compositions (approximately 0.4 eV for both (100) and (111) surfaces,

respectively).

Figure S7: Variation of vacancy formation energy varying local environments. Vacancy
formation energies on the (a) (100) and (b) (111) surface are shown. The error bar indicates
the standard deviations of twenty independent samples.

We assessed the uncertainties of atomic configurations in the nanoparticle that appears

in the kMC simulations (Figure S8a) employing the ensemble method.S10 Uncertainty values

are indeed instrumental in gauging how well atomic configurations are represented within

the training set. To ascertain any sampling bias across energy levels, we plotted uncer-

tainty against energy for the octahedron nanoparticles that emerge in the kMC simulation

in Figures S8b and c (for Pt and Co, respectively). Our findings indicate that uncertainties

remain reasonably low (0.144 eV/atom; 95th percentile in the training set) for the majority

of configurations, in all energy ranges. It is essential to highlight, though, that due to the

atomic mapping characteristics of machine-learned potentials, these uncertainty values may

not genuinely reflect the thermodynamic energy associated with each atom.S11 Therefore,
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the low-energy configurations are not necessarily the common configurations. Nevertheless,

our analysis indicates that the sampling has been uniformly conducted across diverse energy

ranges.

Figure S8: The uncertainty and atomic energy distribution on the nanoparticle from kMC
simulation. (a) Atomic structure of the nanoparticle from kMC simulation. Correlation
between atomic energies and uncertainties for (b) Pt and (b) Co atoms. The atomic structure
is cut by a quarter to display its internal atomic arrangements. The red dashed line indicates
the 95th percentile uncertainty value of the training set.

Table S3: Details of the training set

Structure
Method

Composition Number of Number of Number of

type (Pt1−xCox) structures atoms training points

Distortion

0.1 11 108 1,188

0.25 11 108 1,188

0.5 22 108 2,376

0.75 11/44 108/96 5,412

1.0 11/44 108/96 5,412

Bulk

MD (600 K)

0.0 30 107 3,210

0.1 30 107 3,210

0.2 30 107 3,210

0.3 30 107 3,210

Continued on next page
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Table S3 – continued from previous page

Structure
Method

Composition Number of Number of Number of

type (Pt1−xCox) structures atoms training points

0.4 30 107 3,210

1.0 30 107 3,210

NEB

0.0 22 107 2,354

0.1 41 107 4,387

0.2 43 107 4,601

0.3 44 107 4,708

0.4 49 107 5,243

Bulk 1.0 14 107 1,498

Relaxation

0.0 5 106 530

0.1 17 106 1,802

0.2 20 106 2,120

0.3 23 106 2,438

0.4 25 106 2,650

1.0 10 106 1,060

(100) surface

MD (600 K)

0.0 30 79 2,370

0.1 30 78 2,340

0.2 30 78 2,340

0.3 30 78 2,340

0.4 30 78 2,340

NEB

0.0 54 79 4,266

0.1 144 79 11,376

0.2 113 79 8,927

0.3 144 79 11,376

Continued on next page
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Table S3 – continued from previous page

Structure
Method

Composition Number of Number of Number of

type (Pt1−xCox) structures atoms training points

0.4 203 79 16,037

(100) surface Relaxation

0.0 21 104–106 2,203

0.1 23 104–106 2,410

0.2 21 104–106 2,210

0.3 36 104–106 3,772

0.4 32 104–106 3,365

(111) surface

MD (600 K)

0.0 30 79 2,370

0.1 30 78 2,340

0.2 30 78 2,340

0.3 30 78 2,340

0.4 30 78 2,340

NEB

0.0 53 79 4,187

0.1 107 79 8,453

0.2 94 79 7,426

0.3 213 79 16,827

0.4 102 79 8,058

Relaxation

0.0 27 92–94 2,511

0.1 18 92–94 1,674

0.2 22 92–94 2,045

0.3 26 92–94 2,416

0.4 29 92–94 2,697

Truncated
octahedron NEB

0.0 245 150 36,750

0.25 120 150 18,000

Continued on next page
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Table S3 – continued from previous page

Structure
Method

Composition Number of Number of Number of

type (Pt1−xCox) structures atoms training points

Truncated
octahedron Relaxation

0.0 82 145–150 12,061

0.25 102 145–150 15,008

Icosahedron

NEB
0.0 127 139 17,653

0.25 140 139 19,460

Relaxation
0.0 68 134–139 9,261

0.25 58 134–139 7,895

Cuboctahedron

NEB
0.0 132 151 19,932

0.25 132 151 19,932

Relaxation
0.0 176 146–151 25,955

0.25 134 146–151 19,822

Octahedron

NEB
0.0 129 127 16,383

0.25 111 127 13,986

Relaxation
0.0 267 122–127 33,040

0.25 124 122–127 15,397

Total 4,576 514,449

Training quality of NNP

The trained NNP exhibits root-mean-square errors (RMSEs) of 4.46 meV/atom, 0.13 eV/Å,

and 6.72 kbar for energy, force, and stress, respectively, for the validation set (see Figure

S9).
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Figure S9: The parity plots for NNP and DFT. (a) Energy and (b) force correlation for the
validation set.

Accuracy of the MEAM potential

MEAM potentialS12 has the RMSE of 0.381 eV and 0.835 eV for vacancy formation energy

and migration barrier.

Figure S10: Performance test of the MEAM potential. (a) Vacancy formation energy (b)
vacancy migration barrier

Error of surface and edge sites

We investigate the contribution of error sources from bulk, surface, edge, and vertex sites.

However, due to the atomic mapping characteristics of machine-learned potentials,S11 it is
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difficult to directly pinpoint errors in individual atoms. Instead, we have calculated the

uncertainty for each atomic site, which reflects how well the local environment around each

atom is represented in the training set. The uncertainty is defined as a standard deviation

of atomic energies, calculated from the ensemble of four machine-learned potentials trained

on the atomic energies in the training set.S10 High atomic uncertainties indicate that the

corresponding local environment is not included in the training set, potentially leading to

significant errors. Figures S11a-c show the uncertainties of edge (with vertex), surface (with

subsurface), and bulk atoms, respectively, as a function of nanoparticle size. The red dashed

line shows the uncertainty value for the 95th percentile of the training set. In Figure S11a,

we find that the uncertainties of edge and vertex atoms are lower than the uncertainties

in the training set, which means that these configurations are sampled in the training set,

except for the small nanoparticles with diameters lower than 1.0 nm. The uncertainties

of surface and subsurface atoms are almost similar to the edge and vertex atoms (Figure

S11b). The uncertainties of bulk atoms (Figure S11c) are marginally lower than those of

the surface, edge, and vertex atoms, but with no significant differences. This suggests that

the errors are not predominantly localized to the under-coordinated atoms at the edges

and vertices but are instead dispersed throughout the entire nanoparticles. On the other

hand, nanoparticles smaller than 1.0 nm still display substantial errors and uncertainties.

To visualize the uncertainties in these nanoparticles, we have assigned colors to the atoms

based on their uncertainty values in Figure S12. We observe that a significant portion of

the nanoparticles exhibit uncertainties exceeding the values in the training set. This might

be attributed to the presence of local environments with high vacuum ratios, which are not

sampled in the original training set.
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Figure S11: The uncertainty analysis for three different regions for varying sizes and shapes
of nanoparticles. The regions in nanoparticles are divided into (a) edge (with vertex), (b)
surface (with subsurface), and (c) bulk atoms. Error bars represent standard deviations.
The red dashed line indicates the 95th percentile uncertainty value of the training set.

Figure S12: Errors in NNP across different sizes and shapes of nanoparticles. Insets provide
a visual representation of nanoparticles smaller than 1 nm, with uncertainties indicated by
color-coding.
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NNP error on various shapes of nanoparticles

The NNP errors for the icosahedron, cuboctahedron, and octahedron shape of nanoparticles

are evaluated.

Figure S13: Single-point DFT calculations on the structure from kMC simulation. (a) icosa-
hedron, (b) cuboctahedron, and (c) octahedron. The energies obtained from both NNP and
DFT calculations are referenced to the energy of the first snapshot of the kMC simulation.

Derivation of total loss ratio

We derived theoretically the loss of the initial atoms as a function of particle diameter, using

the reaction rate (k) and Gibbs–Thomson equationS13 that is defined as:

∆E = −4Ω

n
· γ
d
, (10)

where ∆E stands for change of dissolution potential, and Ω, n, γ, and d are the atomic

volume, the number of electrons transferred, surface energy, and diameter of the particle.

First, we can easily assume that the number of dissolved atoms is proportional to the number

of surface atoms (∼ d2) and the reaction rate of dissolution (k). Next, we rewrite the reaction

rate (k) in terms of diameter (d) and activation barrier (Ea). According to the BEP relation,

the activation barrier is proportional to the reaction energy. In our case, the change of

dissolution potential (∆E) can be regarded as reaction energy. Therefore, the loss becomes
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a function of diameter (d) and change of dissolution potential (∆E). Finally, the change

of dissolution potential is inversely proportional to diameter based on the Gibbs–Thomson

equation, making the loss of initial atoms only a function of diameter.

Loss(%) ∝ d2 × k

d3
(11)

∝ A

d
exp

(
− Ea

kBT

)
(12)

∝ A

d
exp (−B∆E) (13)

=
A

d
exp

(
B

d

)
(14)

Comparison of icosahedrons and octahedrons

Octahedrons have lower vacancy formation energy of the edge sites than icosahedrons.

Figure S14: Vacancy formation energy of edge site for icosahedrons and octahedrons. The
means (standard deviations) of vacancy formation energy for icosahedron and octahedron
are 0.79 eV (0.36 eV) and 0.64 eV (0.29 eV), respectively.

Extending the elemental systems

The trends in durability in relation to the size, shape, and atomic ordering of Pt3Ni nanopar-

ticles are also similar to those of Pt3Co nanoparticles (see Figures S15a-c). Note that we
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assume that the BEP parameters of Co and Ni are identical due to their similar electrochem-

ical characteristics.S14

Table S4: Energy and force RMSE for PtNi and PtCoNi systems

System Energy RMSE Force RMSE
(meV/atom) (eV/Å)

PtNi 2.6 0.13
PtCoNi 3.3 0.12

Figure S15: KMC simulation results for PtNi. (a) Time evolution of dissolution ratio of
various sizes of truncated octahedron Pt3Ni nanoparticles. The dissolution ratio is defined
as a ratio of the number of dissolved atoms to that of the initial total atoms. (b) Time
evolution of dissolution ratio of various shapes of Pt3Ni nanoparticles. (c) Time evolution of
dissolution ratio of ordered, disordered, and core–shell Pt3Ni nanoparticles.
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