- Supporting information -

Influence of Bi doping on physical properties of lead halide perovskites: a comparative first-principles study between CsPbI₃ and CsPbBr₃

Youngho Kang^{a,*}, Sungwoo Kang^b, and Seungwu Han^{b,*}

^aMaterials Data Center, Korea Institute of Materials Science, Changwon 51508, Korea ^bDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea *Corresponding author

E-mail address: thehoya84@gmail.com (Y. Kang) and hansw@snu.ac.kr (S. Han)

Table S1

The cell-size dependence of the formation energy of Bi_{Pb}^{1+} in α -CsPbI₃ using the PBE without the SOC effect. The value is presented as the relative value (ΔE^{f}) relative to the one using a 5×5×5 supercell.

Supercell size	$\Delta E^{f}(\mathrm{Bi}_{\mathrm{Pb}}^{1+})$ (eV)	
3×3×3	-0.0745	
4×4×4	0.0006	
5×5×5	0.0	

Fig S1. Stability regions of different compounds with respect to *X* and Pb chemical potentials in $CsPbX_3$ [*X*=I for (a) and Br for (b)]. Chemical potentials of each element referenced to the energy of their own stable phases are listed in Table S2 for three representative points A (*X*-poor), B (intermediate), and C (*X*-rich).

Table S2

		α-CsPbI ₃	δ -CsPbBr ₃
A	μ_{Cs}	-2.72	-2.93
	$\mu_{ m Pb}$	0.00	0.00
	μ_X	-1.16	-1.50
В	μ_{Cs}	-3.30	-3.54
	$\mu_{ m Pb}$	-1.16	-1.64
	μ_X	-0.58	-0.75
С	μ_{Cs}	-3.88	-4.16
	$\mu_{ m Pb}$	-2.32	-3.28
	μ_X	0.00	0.00
Bi-rich	μ_{Cs}	-3.21	-3.50
	$\mu_{ m Pb}$	-1.00	-1.56
	μ_X	-0.66	-0.79

The chemical potentials of each element in eV depending on the growth conditions shown in Fig. S1. The values for Bi-rich are used for calculating the formation energy of Bi_{Pb}.

Calculation of the equilibrium Fermi level

For the calculation of the equilibrium Fermi level (or the equilibrium concentration of free carriers, the native acceptors, and ionized Bi_{Pb}) at a given temperature, we applied the charge neutrality condition which is given by $n = [Bi_{Pb}^{1+}]$ if the compensation by the native acceptors is negligible. Using Eqs. 4 and 5 in the text, this neutrality condition can be expressed by $N_{\rm C} \exp\left(\frac{E_{\rm F}-{\rm CBM}}{kT}\right) = \frac{[Bi_{\rm Pb}^{\rm tot}]}{1+2\exp\left\{\frac{E_{\rm F}-{\rm CBM}}{kT}\right\}}$. The consideration of effects of the native acceptors modifies the neutrality condition as $n + [V_{\rm Cs}^{1-}] + 2 \times [V_{\rm Pb}^{2-}] + [I_1^{1-}] = [Bi_{\rm Pb}^{1+}]$, which can be expressed as $N_{\rm C} \exp\left(\frac{E_{\rm F}-{\rm CBM}}{kT}\right) + N_{\rm Cs} \exp\left\{-\frac{E'(V_{\rm Cs}^{1-})}{kT}\right\} + 2 \times N_{\rm Pb} \exp\left\{-\frac{E'(V_{\rm Pb}^{2-})}{kT}\right\} + N_{\rm Cs} \exp\left\{-\frac{E'(V_{\rm Cs}^{1-})}{kT}\right\} = \frac{[Bi_{\rm Pb}^{\rm tot}]}{1+2\exp\left\{\frac{E_{\rm F}-{\rm CBM}}{kT}\right\}}$ by using Eqs. 4-6. For a given $[Bi_{\rm Pb}^{\rm tot}]$, we determined the equilibrium Fermi level by evaluating $E_{\rm F}$ to solve the above neutrality equations. For instance, neglecting the compensation by native acceptors, the equilibrium Fermi level for CsPbBr₃ including $[Bi_{\rm Pb}^{\rm tot}]=10^{20}$ cm⁻³ is CBM-0.25 eV, which leads to the equal concentration (~10^{14} cm^{-3}) of free electrons and $[Bi_{\rm Pb}^{\rm tb}]$.